STRUCTURE OF ATOM

(Question bank with answers)

1. what will happen to wavelength associated with a moving particle if is velocity is reduced to half? ans: wavelength becomes double of the original value because $\lambda=\frac{\mathrm{h}}{\mathrm{m} \mathrm{v}}$ or $\lambda \alpha \frac{1}{\mathrm{v}}$.
2. can we apply Heisenberg's uncertainty principle to stationary state?
ans: no, because velocity is zero and position can be measured accurately
3. What do you mean by saying that energy of the electron is quantized?
ans : this means that the electrons in an atom have definite values of energies.
4. What is the difference between a quantum and photon?
ans : The smallest packet of any radiation is called quantum whereas that of light is called photon.
5. What is the experimental evidence in support of the idea that electronic energies in an atom are quantized?
ans: The line spectrum of any element has lines corresponding to definite wavelengths. Lines are obtained as a result of electronic transitions between the energy levels. Hence, the electrons in these levels have fixed energy, i.e. quantized values.
6. an electron beam after hitting a nickel crystal produces a diffraction pattern. What do you conclude?
ans: electron has wave nature
7. The $4 f$ subshell of an atom contains 12 electrons. What is the maximum number of electrons having same spin?
ans: seven
8. Which of the following sets of quantum numbers
for orbitals in hydrogen atom has larger energy? :
$\mathrm{n}=3, \iota=2, \mathrm{~m}_{\mathrm{l}}=+1 \quad \mathrm{n}=3, \iota=2, \mathrm{~m}_{\mathrm{l}}=-1$
ans: both are orbitals of same subshell and therefore have same energy.
9. How many nodes are present in 3 p orbital?
ans: no. of nodes in an orbital= $(\mathrm{n}-\iota-1)$. therefore no. of nodes in $3 p$ orbital $=3-1-1=1$
10. How many quantum are required to specify an orbital?
ans: three (principal quantum number(n), azimuthal quantum number(I), and magnetic quantum number(m_{1}))
11. What is the number of orbital present in third principle shell?
ans: $3 s$ (one) $+3 p$ (three) $+3 d$ (five) $=9$
12. what is the maximum number of electrons
theoretically possible for a seventh principal shell?
ans: no. of electrons in a shell $=2 \mathrm{n}^{2}$. Therefore electrons in $7^{\text {th }}$ shell $=2 \times 7^{2}=98$
13. how many unpaired electrons are present in $P(Z=15)$?
ans: electronic configuration of P is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$ $3 p^{3}$. No. of unpaired electron is 3
14. explain the meaning of the symbol $4 d^{6}$?
ans: it means that 4 d subshell has 6 electrons. 4 represents fourth energy shell and d is a subshell and 6 electrons are present in d orbital of subshell.
15. How many nodes are present in 4 d orbital?
ans: no. of nodes $=(n-\iota-1)=4-2-1=1$
16. What is the lowest shell which has an f-subshell ans: fourth
17. How are $d x y$ and $d x^{2}-y^{2}$ orbitals related? ans: the $d x y$ orbital is exactly like $d x^{2}-y^{2}$ orbital except that its lobes are at an angle of 450 to the lobes of $\mathrm{dx}^{2}-\mathrm{y}^{2}$.
$d x y$ orbital is between x and y axis on xy plane and $d x^{2}-y^{2}$ is exactly on x and y axis.
18. Which of the four quantum number (n, ι, m_{1}, m_{s}) determine:
a) the energy of an electron in a hydrogen atom and multi electron atom ans: principal quantum number (n)
b) the size of an orbital ? ans: principal quantum number (n)
c) the shape of an orbital? ans: azimuthal quantum number (l)
d) the orientation of an orbital in space? ans: magnetic quantum numbers (m_{l})
19. What is the difference between L and ι ?
ans: the notation ι represents azimuthal quantum number, which can have values $0,1,2,3,4 \ldots \ldots .$. . etc whereas L represents second Bohr orbit for which $\mathrm{n}=2$
20. What will be the maximum number of electrons present in an atom having $n+\iota=4$?
ans: the subshells which can have $n+1=4$ are 4 s $(4+0)$ and $3 p(3+1)$. Therefore, these will accommodate maximum of $2+6=8$ electrons.
